skip to content

Winton Programme for the Physics of Sustainability

Department of Physics

Discussion workshop on


Organised by Dr Alex Chin (University of Cambridge), Professor Johnjoe McFadden (University of Surrey), Elisabeth Wallace (UK Science and Innovation Network)

Wednesday 18th – Thursday 19th March 2015

Robinson College, University of Cambridge

 Since its modern revival in 2007, the field of Quantum Effects in Biological Systems (QuEBS) has rapidly developed into a high profile interdisciplinary area of physical science, bringing together physicists, chemists and biologists to understand and explore the impact of quantum mechanics in some of the most important biological processes found in Nature.  Inspired by the new insights provided by QuEBS, the scope of inquiry is now expanding beyond the still unanswered questions of how and why quantum effects are protected in biomolecular structures.  This two-day workshop will investigate one of these exciting new questions; can QuEBS-like phenomena be artificially engineered for future (quantum) technologies?

The molecular architectures under study in QuEBS, and particularly those found in photosynthesis, are highly sophisticated, evolved solutions to a range of (biological) problems, and are exquisite examples of nanoscale engineering. While the possible role of quantum mechanics in enhancing efficiencies or robustness in these biological "devices" remains under debate, it is clear that any quantum enhancements operate in a fundamentally different mode compared to other quantum devices, such as quantum computers. Thus, from light harvesting in photosynthesis to avian navigation, natural phenomena provide conceptually new contexts to investigate how quantum effects can be protected and engineered for purpose. As many of the biological problems successfully tackled by Nature are also challenges faced by a range of current technologies, such as organic solar cells, catalysis and sensing, there is a growing opportunity to exploit the developing understanding of QuEBS outside of the biological domain. This potential has been recognized here in he UK, and we are delighted to acknowledge the support of the UK Science and Innovation Network in funding this workshop.

This meeting aims to bring together leading researchers in the area of QuEBS and related fields, hoping to facilitate a fruitful exchange of ideas, tools and expertise that may shape the possible development of bio-inspired quantum technologies and further our understanding of quantum effects in biological structure. By presenting the current state of knowledge in QuEBS, its experimental underpinnings, theoretical framework and major questions, we hope to show how developments in this area impact other disciplines, how it could breed novel types of bio-hybrid devices and also how other quantum technologies could provide valuable and detailed new information in this area.

To follow the event on Twitter use #QBio




Latest news

Manipulation of Quantum Entangled Triplet Pairs

7 January 2021

Researchers have uncovered a new technique to create and manipulate pairs of particle-like excitations in organic semiconductors that carry non-classical spin information across space, much like the entangled photon pairs in the famous Einstein-Podolsky-Roden “paradox”.

Machine learning algorithm helps in the search for new drugs

20 March 2019

Researchers have designed a machine learning algorithm for drug discovery which has been shown to be twice as efficient as the industry standard.