skip to primary navigationskip to content
 

Excited state diffusion in hybrid nanostructures

Dr Felix Deschler (Optoelectronics Group) and Dr Hannah Joyce (Department of Electrical Engineering)

The application of lead–halide perovskites in the field optoelectronics has been driven by advances in photovoltaic devices, with recent power conversion efficiencies exceeding 20%. Our project will investigate the novel approach of low-dimensional hybrid lead-halide perovskite nanostructures for optoelectronic applications, in particular LEDs. These structures still allow for efficient charge transport, but enhance radiative recombination rates due to charge confinement, as has been recently demonstrated by high photoluminescence yields in lead-halide perovskite nanocrystals. We also expect these low-dimensional structures to show novel photo-physical properties, which are advantageous for optoelectronic devices, for example lowered thresholds for amplified spontaneous emission. We will use high resolution spatially-resolved transient emission measurements to quantify in-situ charge diffusion and recombination, with the aim to identify optimal nanostructures.

Winton Annual Report 2015

RSS Feed Latest news

Winton Cambridge-Berkeley Exchange Programme

Nov 21, 2016

First Winton Cambridge-Berkely Exchange Programme awards announced

View all news