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ﬁgusﬁ\: ~200 Wm-2 Energy from the Sun
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Photons in, electrons out

Photovoltaic energy conversion requires:
— photon absorption across an energy gap
— separation of photogenerated charges
— asymmetric contacts to an external circuit

eV



Photons in, electrons out




Photons in, electrons out

p type silicon




p type silicon

efficiency
~15-20%

power rating

~100-200 W,

Applications, large and small

Solar powered refrigeration ~1 mW
~100 W,



Outline

Photovoltaic energy conversion
Limiting efficiency of solar cells
Where next?

Routes to more work per photon

Molecular solar cells



Detailed balance limit

Band gap

(i) One electron hole pair per photon with hv > £,

(ii)) Carriers relax to form separate Fermi distributions at lattice
temperature T, with quasi Fermi levels separated by Ap.

mbient

(iii) All electrons extracted with same electrochemical potential Ap = eV

(iv) Only loss process is spontaneous emission



Detailed balance limit

A fraction X3 of the “sky” emits solar radiation at
a black body temperature of T,

A fraction (1 - X3) of the “sky”
emits ambient radiation at a

black body temperature of
T

ambient

Ta, 1 Work

The photovoltaic energy _ \

converter emits ambient

radiation at a black body
temperature of T, o aNd @

chemical potential of Ap

The remaining charge pairs
provide a current of electrons
with chemical potential of Apn




Calculation of limiting efficiency

Particle flux
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Photon energy / eV
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Limit to efficiency: the Goldilocks story

? | Egap




Photon energy / eV

= > DD w s
o o0 o v o wu o

o
o

o
o

Limit to efficiency: the Goldilocks story

Current

Voltage

Power

Y

A

&

Energy gap ]
&

Energy gap ]
&

»

Energy gap ]



Photon energy / eV
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Photon energy / eV
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Limiting efficiency of single band gap cell
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Courtesy:Ned Ekins-Daukes

Practical and limiting efficiencies



How bad are the assumptions?

(i) One electron hole pair per photon with hv > E,,

Overestimate current by 10-20%

(i) Carriers relax to form separate Fermi distributions at lattice
temperature T, ...« With quasi Fermi levels separated by Ap.

~ OK

(iii) All electrons extracted with same electrochemical potential Ap = eV

Overestimate eV, by O(0.1 eV)

(iv) Only loss process is spontaneous emission

Overestimate eV . by few 0.1 eV
Overestimate fill factor



Highest efficiency single junction: thin film GaAs
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absorbing substrate

Limiting efficiency: 30.4 % Limiting efficiency: 32.4 %

Actual efficiency: 24.8 % Actual efficiency: 28.8 %

Spire Corp, IEEE Tr. Electron Dev. 37, 469 (1990) Alta Devices, Prog. Photovoltaics 20, 606 (2012)
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Photovoltaic energy conversion
Limiting efficiency of solar cells
Where next?
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Molecular solar cells
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e Installed PV capacity growing at > 30% per annum for ~15 years
e Mainly based on crystalline Si technology

e Where next?

IEA PVPS 2011
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Routes to more work per photon
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Route 1: Multiple band gaps
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I1I-V Multi-Junction Solar Cells

Wide range of band gaps available but seek combinations with similar lattice
constant

Record of 43.5% by Solar Junction (April 2011) for a triple junction using
dilute nitride (InGaP/GaAs/InGaAsN)




Route 2: More work per photon by slowed cooling
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Strategies for slowing carrier cooling

Exploit limited electronic and
photon states in nano- or
molecular systems

Carrier cooling slowed down in
guantum dots by ‘phonon
bottleneck’ effect

Enhance this with strategies to
prevent recombination

e Core-shell structure,
interface passivation, ligands

e Cooling slowed by 3 orders

1P
158
S

Evidence for slowed cooling but tiny
effect at solar intensities

Pandey et al., Science 322, 929 (2009)



Route 3: Reshaping the spectrum by up and down-conversion
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Molecular up-conversion: applied to a-Si solar cell

Absorption in red absorbing molecules = triplet formation = triplet transfer

to emitter = singlet regeneration 2 emi Evidence for both up- and down-

Applied to a-Si:H solar cell to increase EQl conversion, but small impact on total
photocurrent

Cheng et al., Energy Env. Sci.2, 6593 (2012)
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Thin films and emerging technologies

Amorphous Si

Polymer:fullerene
Molecule:fullerene
Polymer:nanocrystal

Single junction:
Limiting mn as above

Practical n limited
- by recombination:
small grains

CulnGaSe,
CdTe

Material E, Grain size | Max Jg. Actual J . | V.. Efficiency

(eV) (Hm) (mAcm?) | (mAcm=2) | (V) (%)
Crystalline 1.1 >104 43 42.7 0.706 | 25.0
silicon
Crystalline 1.4 >104 32 29.7 1.122 | 28.8
GaAs
Polycrystallin 1.1 10-100 42 38.0 0.664 | 204
e Silicon
CulnGaSe, >1.0 1 <45 34.8 0.713 | 19.6
Cd Te 1.4 1 42 26.1 0.845 | 16.7
Amorphous Si | ~1.7 <102 ~23 16.7 0.886 | 10.1
Organic ~1.6 <102 ~24 16.7 0.899 | 10.0

Heterojunction:
What limits n ?



Molecular photovoltaic materials

e Excited states are localised:

— Photogenerated charge
pairs don’t separate

— Separated charges move

slowly conjugated molecule

conjugated
polymer

nanocrystal

e Charge separation induced by
D doping with electron acceptors

1 nm



Energy

Molecular photovoltaic conversion
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State of the Art in Molecular Photovoltaics
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Molecular Photovoltaics: Energy efficiency

Motivation is lower manufacture cost, but also lower energy intensity

Enable larger impact on CO, emissions in short term, especially if
lower cost stimulates faster uptake

In long term, higher power conversion efficiency is key

Chris Emmott, (PhD research), 2012



Optical gap

Limiting efficiency in molecular heterojunction
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Limiting efficiency in molecular heterojunction
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Limiting 1 is lower and optimum E,
larger than for single junction

Most models predict 20%, practical
best is 10%

Where are losses?
How large must (E,— E) be?

N. Giebink et al. Phys Rev B 83,

195326 (2011)

L. J. A. Koster et al., Adv. Eneregy. Mat.
(2012)



Size of energetic losses in molecular heterojunction

Jsc~ 8mA cm™

f___L__T Jsc < 1mA cm™
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e Probe energy of charge pair at interface, E.; with electroluminescence

* Modulate E.; for same E, by varying fullerene acceptor

e Find
— photocurrent is generated only when (E, — E.;) > 0.35 eV (with exceptions)
— eV, is smaller than E.;(and E.) by ~ 0.4 eV

J Am Chem Soc 134, 685 (2012)

Mark Faist et al.,



Size of energetic losses in molecular heterojunction

Energy

Resolve energy loss AE = E, - eVgc into two components:
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Charge separation loss A E.normally > 0.3 eV. Absent in inorganics.
Non-geminate recombination loss A E; ~ 0.4 eV, similar to inorganics

Net E,— eV, > 0.6 eV, c.f 0.4 eV for inorganic single junctions



Size of energetic losses in molecular heterojunction
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Molecular higher efficiency approaches?

e Multi junctions:

— Tandems demonstrated.
Easy to manufacture

e Spectral conversion:

— Singlet exciton fission for
downconversion

— Triplet-triplet annihilation for
upconversion

e Slow carrier thermalisation? E, 32 A~
— Helps to reduce losses to trapping at ji — ) —
interfaces and in transport Eer=—==

— Might give access to hot carrier effects if
energy selective contacts possible

A. Rao et al). Am. Chem.
Soc. 2010, 132, 12698-12703.



Where do we go from here?

e Solar electricity is abundant, sustainable, versatile
and available

e Existing technologies operate within a factor of 2 of
the physical limit of 30%

e Goalis to reach similar or higher efficiencies with
low energy technologies that can grow quickly.

e Challenges remain for physicists, chemists and
materials scientists — but none of them known to
be insurmountable

Thank you for your attention!



