ENERGY EFFICIENCY... ...fundamental physical limits

Cambridge, 1st October 2012

Limits to efficiency of photovoltaic energy conversion

Jenny Nelson

Ned Ekins-Daukes, Chris Emmott, Thomas Kirchartz, Mark Faist Department of Physics, Centre for Plastic Electronics and Grantham Institute for Climate Change Imperial College London

Imperial College London

USA: ~200 Wm⁻²

6500 kW solar resource
 1500 W electricity
 10 kW total energy

Energy from the Sun

UK: 125 Wm⁻²

500 kW solar resource 700 W electricity 5 kW total energy

Cote d'Ivoire: ~250 Wm⁻² 4500 kW solar resource 20 W electricity 0.5 kW total energy

Photons in, electrons out

- Photovoltaic energy conversion requires:
 - photon absorption across an energy gap
 - separation of photogenerated charges
 - asymmetric contacts to an external circuit

Photons in, electrons out

Photons in, electrons out

CIS Tower, Mancheste 0.4 MW_p (Solar Century) efficiency ~ 15-20% power rating ~ 100-200 W_p

Applications, large and small

 $\sim 1 \text{ mW}_{p}$

Outline

- Photovoltaic energy conversion
- Limiting efficiency of solar cells
- Where next?
- Routes to more work per photon
- Molecular solar cells

Detailed balance limit

(i) One electron hole pair per photon with $hv > E_{g'}$

(ii) Carriers relax to form separate Fermi distributions at lattice temperature $T_{ambient}$ with quasi Fermi levels separated by $\Delta\mu$.

(iii) All electrons extracted with same electrochemical potential $\Delta \mu = eV$

(iv) Only loss process is spontaneous emission

Detailed balance limit

Calculation of limiting efficiency

Energy gap

Energy gap

Limiting efficiency of single band gap cell

Practical and limiting efficiencies

How bad are the assumptions?

(i) One electron hole pair per photon with $h_V > E_g$,

Overestimate current by 10-20%

(ii) Carriers relax to form separate Fermi distributions at lattice temperature $T_{ambient}$ with quasi Fermi levels separated by $\Delta\mu$.

~ OK

(iii) All electrons extracted with same electrochemical potential $\Delta \mu = eV$ Overestimate eV_{oc} by O(0.1 eV)

(iv) Only loss process is spontaneous emission

Overestimate eV_{oc} by few 0.1 eV Overestimate fill factor

Highest efficiency single junction: thin film GaAs

Spire Corp, IEEE Tr. Electron Dev. 37, 469 (1990)

Alta Devices, Prog. Photovoltaics 20, 606 (2012)

Outline

- Photovoltaic energy conversion
- Limiting efficiency of solar cells
- Where next?
- Routes to more work per photon
- Molecular solar cells

- Installed PV capacity growing at > 30% per annum for ~15 years
- Mainly based on crystalline Si technology
- Where next?

Cost reductions follow maturing of Si technology through innovations in manufacturing and design.

Cost evolution typical of a semiconductor technology not a conventional energy technology

Role for technical innovation?

PV technologies

Outline

- Photovoltaic energy conversion
- Limiting efficiency of solar cells
- Where next?
- Routes to more work per photon
- Molecular solar cells

Routes to more work per photon

Route 1: Multiple band gaps

Multi-junction structures or spectral splitting

III-V Multi-Junction Solar Cells

- Wide range of band gaps available but seek combinations with similar lattice constant
- Record of 43.5% by Solar Junction (April 2011) for a triple junction using dilute nitride (InGaP/GaAs/InGaAsN)

This works, but multijunction III-V structures are expensive to grow

Route 2: More work per photon by slowed cooling

Strategies for slowing carrier cooling

- Exploit limited electronic and photon states in nano- or molecular systems
- Carrier cooling slowed down in quantum dots by 'phonon bottleneck' effect
- Enhance this with strategies to prevent recombination
 - Core-shell structure, interface passivation, ligands
 - Cooling slowed by 3 orders

Pandey et al., Science 322, 929 (2009)

Route 3: Reshaping the spectrum by up and down-conversion

Molecular up-conversion: applied to a-Si solar cell

- Absorption in red absorbing molecules → triplet formation → triplet transfer to emitter → singlet regeneration → emis
 Evidence for both up- and down
- Applied to a-Si:H solar cell to increase EQ

Evidence for both up- and downconversion, but small impact on total photocurrent

Outline

- Photovoltaic energy conversion
- Limiting efficiency of solar cells
- Where next?
- Routes to more work per photon
- Molecular solar cells

Thin films and emerging technologies

Amorphous Si CuInGaSe₂ CdTe

Polymer:fullerene Molecule:fullerene Polymer:nanocrystal

Material	E _g (eV)	Grain size (µm)	Max J _{sc} (mAcm ⁻²)	Actual J _{sc} (mAcm ⁻²)	V _{oc} (V)	Efficiency (%)
Crystalline silicon	1.1	>10 ⁴	43	42.7	0.706	25.0
Crystalline GaAs	1.4	>104	32	29.7	1.122	28.8
Polycrystallin e Silicon	1.1	10-100	42	38.0	0.664	20.4
CulnGaSe ₂	> 1.0	1	< 45	34.8	0.713	19.6
Cd Te	1.4	1	42	26.1	0.845	16.7
Amorphous Si	~1.7	<10 ⁻²	~ 23	16.7	0.886	10.1
Organic	~1.6	<10 ⁻²	~24	16.7	0.899	10.0

Single junction: Limiting η as above

Practical η limited

by recombination: small grains

Heterojunction: What limits η ?

Molecular photovoltaic materials

- Excited states are localised:
 - Photogenerated charge pairs don't separate
 - Separated charges move slowly

nanocrystal

Charge separation induced by doping with electron acceptors

Molecular photovoltaic conversion

State of the Art in Molecular Photovoltaics

• Successive layers deposited from solution

Figure: courtesy Rene Janssen, 2012

- Cell efficiency > 10%
- Modules follow slowly..

Molecular Photovoltaics: Energy efficiency

- Motivation is lower manufacture cost, but also lower energy intensity
- Enable larger impact on CO₂ emissions in short term, especially if lower cost stimulates faster uptake
- In long term, higher power conversion efficiency is key

Limiting efficiency in molecular heterojunction

- Optical gap > electrical gap
- In detailed balance limit, charges recombine radiatively across electrical gap

 Introduce sub-gap states of finite oscillator strength

Limiting efficiency in molecular heterojunction

- Limiting η is lower and optimum E_{g} larger than for single junction
- Most models predict 20%, practical best is 10%
- Where are losses?
- How large must $(E_g E_{CS})$ be?

L. J. A. Koster et al., Adv. Eneregy. Mat. (2012)

Size of energetic losses in molecular heterojunction

- Probe energy of charge pair at interface, E_{CT} with electroluminescence
- Modulate E_{CT} for same E_g by varying fullerene acceptor
- Find
 - photocurrent is generated only when $(E_g E_{CT}) > 0.35$ eV (with exceptions)
 - eV_{oc} is smaller than E_{CT} (and E_{CS}) by ~ 0.4 eV

Size of energetic losses in molecular heterojunction

• Resolve energy loss $\Delta E = E_g - eV_{OC}$ into two components:

- Charge separation loss ΔE_c normally > 0.3 eV. Absent in inorganics.
- Non-geminate **recombination loss** $\Delta E_R \simeq 0.4 \text{ eV}$, similar to inorganics
- Net $E_g eV_{oc} > 0.6 eV$, c.f 0.4 eV for inorganic single junctions

Size of energetic losses in molecular heterojunction

- Inorganic junctions:
 E_g eV_{oc} ~ 0.4 eV in best cases.
 Efficiency within ~5% of DB limit
- Molecular heterojunctions $E_g - eV_{oc} > 0.6 eV$
- Can we reduce ΔE_c ?
- Yes in some cases, ΔE_c as low as 0.1 eV
 - Function of chemical structure
 - But compensated by high ΔE_R
 - Need to understand why!

Molecular higher efficiency approaches?

- Multi junctions:
 - Tandems demonstrated.
 Easy to manufacture

• Spectral conversion:

- Singlet exciton fission for downconversion
- Triplet-triplet annihilation for upconversion
- Slow carrier thermalisation?
 - Helps to reduce losses to trapping at interfaces and in transport
 - Might give access to hot carrier effects if energy selective contacts possible

Where do we go from here?

- Solar electricity is abundant, sustainable, versatile and available
- Existing technologies operate within a factor of 2 of the physical limit of 30%
- Goal is to reach similar or higher efficiencies with low energy technologies that can grow quickly.
- Challenges remain for physicists, chemists and materials scientists – but none of them known to be insurmountable
 Thank you for your attention!