Advanced Nitride Materials for Ultimate Efficiency Solid State Lighting

James S. Speck Materials Department University of California Santa Barbara, CA

LEO of m-GaN from circular opening

Core nitride faculty S.P. DenBaars, U.K. Mishra, S. Nakamura, C. Weisbuch, C.G. Van de Walle

Outline

•Brief primer on light for lighting: not just photons and Watts

- •Lighting: current technologies
- Solid state lighting
 - Challenges: efficiency and cost
 - Solutions: efficiency and cost

•Ultimate solid state lighting

Special thanks to M. Krames (Soraa) and D. Feezell (UCSB/UNM) for slides

Brief Primer on Light for Lighting: Not just Photons and Watts

Light and Lighting – Definitions I (... confusing!)

Radiometry (physics)

 $\begin{array}{ll} \Phi_{\rm e} & {\sf Radiant\ flux-energy\ flow\ (W)} \\ {\sf I}_{\rm e}(\lambda) = {\sf d}\Phi_{\rm e}/{\sf d}\omega & {\sf Radiant\ intensity\ -\ (W/sr)} \\ {\sf S}(\lambda) = {\sf d}\Phi_{\rm e}/{\sf d}\lambda & {\sf Spectral\ power\ distribution\ (W/m)} \end{array}$

Photometry (includes human response!)

Φ_vLuminous flux – Lumens (Im)V(λ)CIE luminous efficiency function

$$\Phi_{\rm v} = 683 \, {\rm Im/W} \int {\rm S}(\lambda) \, {\rm V}(\lambda) \, {\rm d}\lambda$$

Luminous efficacy Lumens/optical watt (Im/W)

$$\eta_e = \Phi_e / P$$
 Radiant efficiency (P = input power)

η_v = η_e K Luminous efficiency Lumens/electrical watt (Im/W)

Fig. 16.7. Eye sensitivity function, $V(\lambda)$, (left ordinate) and luminous efficacy, measured in lumens per Watt of optical power (right ordinate). $V(\lambda)$ is greatest at 555 nm. Also given is a polynomial approximation for $V(\lambda)$ (after 1978 CIE data).

E. F. Schubert Light Emitting Diodes (Canteridae Univ. Press) www.LightEmittingDiction.org

Lumen - Eye-weighted radiant flux

Κ

Light and Lighting – Definitions II

Lumen (Im):	.umen (Im): Luminous flux = Luminous intensity x solid angle e.g., sphere 4π sr							
	A candle : 1 cd x 4π sr = 12.6 lm							
100 W lightbulb: ~1300 lm (i.e, 13 lm/W)								
Correlated Color Temperature (CCT): Apparent blackbody temperature of a light source								
e.g, Inca	andescent bulb:	CCT ~2800 K	'Cold white:	CCT ~5000+ K				
Color Rendering Index (CRI): 'Light quality' – comparison of light source to a blackbody radiator with same CCT (based on light source reflectivity from 8 test samples)								
e.g, Inca	andescent bulb:	CRI = 100	Na lamp: CR	I = 10 - 20				
*formally: luminous inte with a radiant inte	nsity at 555 nm of a so ensity I(λ) of 1.46 x 10 ⁻	ource ³ W/sr						

CIE Diagram and White Light

Fig. 16.8. Relation of maximum possible luminous efficacy (lumens per optical Watt) and chromaticity in the CIE 1931 x, y chromaticity diagram (adopted from MacAdam, 1950).

E. F. Schubert Light-Emitting Diodes (Cambridge Univ. Press) www.LightEmittingDiodes.org

Lighting Technologies

Conventional Light Sources

No Perfect Artificial Light Source Exists (yet)

Incandescent

High Intensity Discharge

Pros: Cheap, efficient Cons: Poor color, long restart, short lifetime

Pros: Very cheap, great color Cons: Very short lifetime, poor energy efficiency

Fluorescent

Pros: Cheap, energy efficient Cons: Can not run in cold temp; difficult/costly to dim, control, Hg

Compact Fluorescent

Pros: Energy efficient Cons: Poor color quality, Can not run in cold, High cost vs. Incand, Hg

Halogen

Pros: Great color, focused light Cons: Very short lifetime, poor energy efficiency

Three Methods of Making White Light with LEDs

Multiple LEDs, RGB

- good efficiency
- highest cost
- tunable color

UV + Phosphors

- best CRI,
- color uniformity
- low cost
- lower efficiency
 - -Phosphor
 - conversion

Blue + Phosphors

- lowest cost
- 100 lm/W
- >90% market share

Luminous Efficacy of a Source: Im/W

Goal 200 Im/W		50%	400 lm/W		
Luminous Efficiency of a Source (Im/W)		= Wall Plug Efficiency		Luminous Efficiency of Radiation (Im/W)	
Luminous flux (Im) Electric power (W)	_	Optical power (W) Electric power (W)		<u>Luminous flux (Im)</u> Optical power (W)	

SSLEC

Ideal LED SSL Efficiencies

Tradeoff between CCT, CRT and efficacy (Im/W)

Ideal: high CRI (100); Iow CCT (2700K); high Im/W!

	cm-LED	Ma	aximum l	LER	Efficacy for 67% Conversion		
	ССТ	CRI 70	CRI 85	CRI 90	CRI 70	CRI 85	CRI 90
RGB White Light	5000	380	365	356	255	245	239
	3800	407	389	379	273	261	254
	2700	428	407	394	287	273	264

pc-LED	Μ	aximum I	LER	Efficacy for 54% Conversion		
ССТ	CRI 70	CRI 85	CRI 90	CRI 70	CRI 85	CRI 90
5000	350	337	332	189	182	179
3800	369	352	350	199	190	189
2700	391	371	363	211	200	196

B + phosphor

GaN LED + YAG:Ce Phosphor White LED Workhorse

http://www.philipslumileds.com/technology/thermal

E. F. Schubert, Light-Emitting Diodes, 2nd ed. (Cambridge University Press, Cambridge, 2006).

Philips Lumileds - DOE L-Prize A19 Bulb

PHILIPS

DOE L-Prize Winner:

10 W; 940 lm (**94 lm/W**); CRI = 92; CCT 2700 K; 25,000 h life

Includes blue and red LEDs

\$49.97 @ homedepot.com (Sept. 27, 2012)

~\$20 for lower Im/W, lower CRI version

White LEDs vs. Conventional Lighting

- Emerging > 100 lm/W phosphor converted white LEDs (power chips)
- Expect > 150 Im/W power LED performance within the next few years

Lighting: Energy and Economics

Impact of Solid State Lighting

Figure ES. 1 Forecasted U.S. Lighting Energy Consumption and Savings, 2010 to 2030

Lighting – U.S. Lumens Production

Linear fluorescent and HID, ~80-120+ lm/W: ~40,000 Tlmh/yr Incandescent + halogen, ~15 lm/W: ~4,000 Tlmh/yr

*SSL ultimately needs >>100 lm/W to displace linear fluorescent and HID

UCSB

High Brightness LED Market

- Largest segment in 2010 was mobile (cell phones, mobile computing, mp3)
- Fastest growing segment was TV and monitor back lighting
- General lighting expected to drive the market by 2015
- Total available SSL market in 2020: ~\$50B \$100B

SSL Economics – our 'Sunshot'!

Cost breakdown for 100k x 4" W/year

7/18/2012

21

CANACCORD Genuity

Life-Cycle Energy of Incandescent Lamps, CFLs, and LED Lamps (DOE, 2012a)

July 18, 2012

© 2012 Strategies Unlimited

Overall System Efficiency

Solid State Lighting: Materials and Devices

What is a Light Emitting Diode?

- Monocrystalline atomic arrangement determines semiconductor bandgap
 - Specifies optical properties
- Impurity doping provides p- and n-type regions
- At forward bias, injected electrons and holes recombine
- Energy may be released radiatively (light) or non-radiatively (heat)
- Fundamentally non-destructive

III-V Materials Systems for SSL

- (AI,Ga)InP system offers red (~650 nm) to yellow (~580 nm) emission
- (In,Ga)N system offers UV-A (~ 380 nm) to green (~550 nm) emission

Major Issues: Heteroepitaxy

C-plane GaN Heteroepitaxy

common to GaN/Al₂O₃; GaN/SiC; GaN/Si

Extended defects: Threading dislocations Typical TD density >10⁸ cm⁻²

Stress:

Growth stresses

Island coalescence Incomplete relaxation Dislocation inclination Mismatched layers

Thermal expansion mismatch (TEC)

Fundamental challenge

Nonpolar/Semipolar GaN Heteroepitaxy

Additional Extended defects:

Basal plane stacking faults No known solution

TEM of typical GaN on Sapphire

Typical GaN on sapphire $\rho_{TD} = 5 \times 10^8 \text{ cm}^{-2}$

Excess Minority Carrier Concentration: Diffusion Length and Dislocation Density

Compare TD densities: GaAs and InP (~10³ cm⁻²); Si and Ge (~10⁰ cm⁻²)

J.S. Speck and S.J. Rosner, *Physica B* 274. 24 (1999)

UCSB

Typical GaN-Based LED Structure

Real Atomic Scale Structure of an LED!

GaN-Based LED Challenges: Droop, Green Gap, Light Extraction

SSL Efficiencies –

Components of High Efficiency and the Challenges

LED Efficiencies

 $\eta_{tot} = \eta_{elec} \times \eta_{IQE} \times \eta_{extrac}$

 $\eta_{elec} : \quad Electrical \ efficiency \ \dots \ ohmic \ losses \\ Better \ contacts, \ doping, \ \dots \ Tunnel \ junctions \\$

η_{IQE}: **Internal quantum efficiency**: electron-hole pairs to photons

Major issues:

Droop (efficiency drop at increasing current drive) Green gap

η_{extrac}: Extraction efficiency: escape efficiency for photons Major issues:

> Increase η_{extrac} Directionality *Approaches here extend to system level issues*

Efficiency Droop

InGaN-based LEDs

 \rightarrow Peak EQE at 1 - 10 A/cm²

Potential Cause:

- 1. Auger recombination: scales as n³
- 2. Carrier leakage/overshoot
- 3. Delocalization of carriers

Solutions via *wider* quantum wells – not possible in current c-plane technology

1000 Im lightbulb today

10 LED die, 1 mm x 1 mm, 350 mA 35 A/cm² 350 mA x 3 V = 1W 100 lm/W x 10 = 1000 lm

IF, we maintain efficiency at 10X current density

1 LED die, 1 mm x 1 mm, 3500 mA ... 350 A/cm²

10X reduction in LEDs, nearly all other cost go down

Solving droop: addresses efficiency AND cost

The 'Green Gap'

*C-plane data are from non-thin-film flip-chip devices

**All data collected at 22 A/cm² or 35 A/cm²

Light Extraction in LEDs

12% of emitted light is extracted
 88% is trapped in the semiconductor as guided modes due to total internal reflection at the semiconductor air or encapsulant interface

More precisely, in planar structures, light is emitted in **guided modes** either in the nitride layers (66%) or in the substrate (22%)

Main light extraction schemes:

*Break propagation of guided modes by using non-planar structures.

*Light extraction is well described by geometrical optics and ray tracing

SSLEC

Solutions to: Droop, Green Gap, Light Extraction

Wurtzite GaN - Polarization

UCSB

SSLEC

QWs on Polar *c*-plane GaN

Strained InGaN QWs induce additional piezoelectric polarization

- Reduced radiative recombination rate
- Reduced transition energy
- Carrier transport issues
- Emission blue-shifts with current density
- QWs are limited in width

QWs on Semipolar Planes

Record Low Droop Blue (20-2-1) LEDs

	35 (A/cm ²)	100 (A/cm ²)	200 (A/cm ²)	300 (A/cm ²)	400 (A/cm ²)
EQE (%)	52.4	50.1	45.3	43.0	41.2
Droop (%)	0.7	5.1	14.1	18.4	21.9

Comparison Semipolar (20-2-1) to c-plane

Both Blue 445 nm LEDs on Bulk GaN 0.1 mm²

Light Extraction – Current Techniques

Approaches to $\eta_{extraction} \sim 80\%$

Chip Shaping

Non-planar process Long light propagation distances Requires ultralow substrate loss

Patterned Sapphire Substrate

Increased defect density Poor thermal conductivity

Roughening

Substrate removal GaN thinning Silver p-side mirror Difficult metallurgy

Photonic Crystals: Light Extraction and Directionality

Rangel et al., *Appl. Phys. Lett.* **97**, 061118 (2010) Rangel et al., *Appl. Phys. Lett.* **98**, 081104 (2011)

Matioli et al., Appl. Phys. Lett. 96, 031108 (2010)

Ultimate Solid State Lighting: Based on bulk GaN

Nonpolar/Semipolar RGB Laser-Based SSL

Overview Bulk Growth Results

Technique	Growth Rate	Diameter	Thickness	TD Density	Challenges	Results
HVPE	~ 100 µm/h	2"	5.8 mm	> 10 ⁶ cm ⁻³	Stress/ Curvature Scaling Cost	b COO
Ammono- thermal	~ 4 µm/h	2"	> 10 mm	< 10 ⁴ cm ⁻³	Growth rate Purity	
HPNSG	< 1 µm/h	0.8"	< 1 mm	~ 10 ² cm ⁻³	Scaling Growth rate	5 mm
Flux	20 µm/h	2"	3 mm	~ 10 ⁵ cm ⁻³	Yield Scaling Cost	

Impact of Bulk GaN

Bulk GaN will enable

C-plane GaN-based devices

Improved performance (no TDs) Improved yield (No TDs) Wafer scaling major origins of bow eliminated

Nonpolar/Semipolar GaN-based devices

Enabled nonpolar/semipolar devices Transition major GaN-based technologies from c-plane to nonpolar/semipolar

Overall analysis:

Ammonothermal shows significant promise for scaling and cost (ultimately <\$100/2" GaN)

Nonpolar violet LED progress

Cross-section TEM: m-plane GaN LED on bulk GaN

Progress in High Wall Plug Efficiency Laser Diodes

Wall plug efficiency:

Conventional III-V LDs (near IR) >70% today; > 10 W power III-N >30% today (blue 440+ nm) >30% today; ~5 W power

 Blue LD phosphor converted white light CRI 90 (363 lm/W max)

 35% WPE LD
 127 lm/W x 0.75 (phosphor) = 95 lm/W

 50% WPE LD
 181 lm/W x 0.75 (phosphor) = 135 lm/W

 67% WPE LD
 243 lm/W x 0.75 (phosphor) = 180 lm/W

Applications of Visible Laser Diodes

Blue laser plus yellow phosphor for directional white light

"Near-parallel beam with a thousand times greater intensity... and half the energy consumption of LED headlights."

Source: http://www.motortrend.com http://www.bmwusanews.com

Prospects

Solid State Lighting

Clear path with existing technologies to >100 Im/W white: Towards \$1/klm cost Replaces incandescent, halogen, compact fluorescent lights

Need transformative technologies to **200 Im/W** white To replace linear fluorescent and HID lamps

Pathway via Bulk GaN substrates (enabler) Nonpolar and semipolar GaN for high QE and low droop Laser-based lighting

"Green gap" – requires fundamental understanding *and* breakthroughs! Solution necessary for RGB-based SSL based on LEDs or lasers

Off-Grid Lighting: GaN Blue PC LED + Solar Cell + Battery

• Kerosene lighting and firewood are used by 1/3 of the world; they cause countless fires and are very inefficient (0.03 lm/watt).

• The average villager spends 10-25% of their annual income on kerosene.

- LED Lighting costs much less on an annual basis and payback period is just 6 months.
- LED Lighting allows education at night and increases safety for the Third World.

Lighting kit - \$38 Solar cell Battery (5 h charge) 2 x 1000 lm lights

Team

Growth / Devices

Ben Bryant Samantha Cruz **Bob Farrell** Tetsuya Fujiwara (now Rohm) Chad Gallinat (now Corning) Matt Hardy James Po Shan Hsu Chia-Yen Huang Christophe Hurni Kate Kelchner Ingrid Koslow Youda Lin (now Soraa) Elison Matioli (now MIT) Siddha Pimputkar Ravi Shivaraman Anurag Tyagi (now Soraa) Yuji Zhao

TEM

Feng Wu

Staff

Dan Cohen Danny Feezell Stacia Keller Erin Young

Faculty

Steve DenBaars Shuji Nakamura Jim Speck Claude Weisbuch

Key Collaborators

Andy Armstrong (Sandia) Kenji Fujito (MCC) Mike Wraback (ARL) Paul Shen (ARL) Yu-Renn Wu (NTU)

