Searching for the Milli-Volt Switch

Eli Yablonovitch,

Winton Inaugural Symposium on Energy Efficiency
Cambridge, United Kingdom
Oct. 1, 2012

Contra Costa-UC Berkeley-MIT-LATTC-Stanford-Tuskegee

Data Center Electricity Usage

Vision for 2020: Swarms of Electronics:

Power Usage Rising Faster Than Past Trend

- Because power consumption $\propto \mathrm{V}_{\text {dd }}{ }^{2}$ and $\mathrm{V}_{\text {dd }}$ (operation voltage) scaling has slowed after $0.13 \mu \mathrm{~m}$ node.

Technolog y Node	0.25 $\mu \mathrm{~m}$	0.18 $\mu \mathrm{~m}$	0.13 $\mu \mathrm{~m}$	90 nm	65 nm	45 nm	32 nm	22 nm	16 nm
$V_{d d}$	2.5 V	1.8 V	1.3 V	1.2 V	1.1 V	1.0 V	0.9 V	0.8 V	0.7 V

High Performance ITRS Roadmap

What is the energy cost of reading out your flash memory?

Read the current going through a resistor, in the presence of noise:

$$
\begin{aligned}
& (\Delta i)^{2}=2 q i \times \Delta f \ldots \ldots \ldots \text { Shot Noise } \\
& (\Delta i)^{2}=\frac{4 k T}{R} \times \Delta f \ldots \ldots \ldots \text { Iohnson Noise }
\end{aligned}
$$

Required voltage $V=i R \gg 2 k T / q \sim 50 \mathrm{mVolts}$

$$
\begin{aligned}
\text { Signal }- \text { to }- \text { Noise Ratio } & =\frac{i}{\sqrt{2 q i \Delta f}}=\sqrt{\frac{i}{2 q \Delta f}} \\
i & >2 q \times \Delta f
\end{aligned}
$$

Required poweriV $>2 \mathrm{q} \Delta \mathrm{f} \times \frac{2 \mathrm{kT}}{\mathrm{q}}=4 \mathrm{kT} \times \Delta \mathrm{f}$
With a safety margin:
Energy Consumed ~ 40 kT per bit processed

Units:

~40kT/bit of information
0.16 atto-Joules/bit of information
0.16 nano-Watts/Gbit/second

This is about 10^{6} times less energy
than we are using today!

What will be the energy cost, per bit processed?

1. Logic
2. Storage
3. Communications currently $>100,000 \mathrm{kT}$ per bit processed

There are many type of memory possible:

1. Flash
2. SRAM
3. Dram
4. Magnetic Spin
5. Nano-Electro-Chemical Cells
6. Nano-Electro-Mechanical NEMS
7. Memristor
8. Chalcogenide glass (phase change)
9. Carbon Nanotubes

Similarly there are many ways to do logic.
But there are not many ways to communicate:

1. Microwaves (electrical)
2. Optical

IBM's Power PC750 Microprocessor

ILD 5-1
M5 SEAL

What is the energy cost for electrical communication?

$$
\begin{aligned}
& V_{\text {noise }}^{2}=4 k T R \Delta f \\
& \frac{V_{\text {noise }}^{2}}{R}=4 k T \Delta f
\end{aligned}
$$

$\underset{\text { Energy }}{\text { Signal }} \geq \underset{\text { per bit }}{\text { Noise Power }}=4 k T$ per bit

All information processing costs $\sim 40 \mathrm{kT}$ per bit.
(for good Signal-to-Noise Ratio)

Great!

So what's the problem?

The natural voltage range for wired
communication is rather low:

$$
\begin{aligned}
& \mathrm{V}_{\text {noise }}^{2}=4 \mathrm{kTR} \Delta \mathrm{f} \\
& \mathrm{~V}_{\text {noise }}^{2}=4 \mathrm{kTR} \frac{1}{\mathrm{RC}} \\
& \mathrm{~V}_{\text {noise }}^{2}=4 \mathrm{kT} \times \frac{1}{\mathrm{C}} \\
& \mathrm{~V}_{\text {noise }}^{2}=\frac{4 \mathrm{kT}}{\mathrm{q}} \times \frac{\mathrm{q}}{\mathrm{C}}
\end{aligned}
$$

$$
\mathrm{V}_{\text {noise }}=\sqrt{\underbrace{4 \mathrm{kT} / \mathrm{q}}_{100 \mathrm{mVolts}} \times \underbrace{\mathrm{q} / \mathrm{C}}_{10 \mu \mathrm{Volts}}}
$$

$$
\mathrm{V} \approx 1 \mathrm{mVolt}
$$

The wire wants 1000 electrons at 1 mVolt each.
(to fulfill the signal-to-noise requirement $>1 \mathrm{eV}$ of energy)

The natural voltage range for a thermally activated switch like transistors is >>kT/q, eg. $\sim 40 \mathrm{kT} / \mathrm{q}$ or about ~ 1 Volt

Voltage Matching Crisis at the nano-scale!

If you ignore it the penalty will be $(1 \text { Volt } / 1 \mathrm{mVolt})^{2}=10^{6}$

The thermally activated device wants at least one electron at ~ 1 Volt.

The New Switch has to Satisfy Three Specifications:

1. Steepness (or sensitivity) switches with only a few milli-volts $60 \mathrm{mV} /$ decade $\Rightarrow \mathbf{1 m V} /$ decade
2. On/Off ratio.
$10^{6}: 1$
3. Current Density or Conductance Density
(for miniaturization)
old spec at 1Volt: $1 \mathrm{mAmp} /$ micron our spec: 1 milli-mho/micron

A low-voltage technology, or an impedance matching device, needs to be invented/discovered at the Nano-scale:

transistor amplifier with steeper sub-threshold slope \bullet TFET's

- Negative Capacitance Gates
$--\mathrm{VO}_{2}$ metal-insulator transition

MEM's switch

Cu
Electro-Chemical Switch

An amplifying transistor as a voltage matching device:

The Zener Diode:

The Esaki Diode:

The Backward Diode as a Switch:

The Backward Diode:

The Backward Diode as a Switch:

2 Ways to Obtain Steepness:

- Modulate the Tunneling Barrier:

- Density of States Switch

The sub-threshold slope

Type III

Type III band alignment

Idealized structure

$$
\begin{aligned}
& \gamma=2.34 \mathrm{meV} \\
& \mathrm{E}_{\mathrm{Z}}=50 \mathrm{meV}
\end{aligned}
$$

$$
\begin{gathered}
T_{\text {device }}=2.16 \% \\
L_{X}=32 \mathrm{~nm} \\
L_{Z}=8.672 \mathrm{~nm}
\end{gathered}
$$

$$
\mathrm{m}^{*}=0.1
$$

Switching Principle:

Conduction
band

Valence band

Switching Principle:

Conduction
band

Valence band

What could go wrong?

1. quantum-mechanical level repulsion:

Gate Voltage
levels never line up!

Evolution of the Tunnel Switch 2010-2012:

Homojunction Backward Diode

2d-2d pn Hetero-junction

The Bi-Layer pn-junction or the Bi-Layer Tunneling Field Effect Transistor

Drop-In Technology:

Due to Capacitive Voltage divider, the gate
efficiency is poor, ~15\% for a silicon fin
charge density on capacitor plate

> Quantum
> Capacitance impels small
> Effective Mass:
charge density of 2 d density-of-states
Respectable gate efficiency requires: $\frac{q m^{*}}{\pi \hbar^{2}}<\frac{\varepsilon_{r} \varepsilon_{o}}{q d^{2}}$

Respectable gate efficiency requires $m^{*}<0.1 m_{o}$

Try InAs, effective mass is lower, density of states is lower, and $\mathrm{C}_{\text {quantum }}$ is lower.

The lower n-channel carrier density makes it easier to swing the energy level

Lower effective mass-easier tunneling

We need $m_{\text {eff }}<0.1$

InAs Band Diagram at Turn-on

No Doping!
For Lab experiments: use Electric Field Induced pn junction.
For production use: Work Function induce pn junction.

InAs Asymmetric 15 nm Body

2D Nanomembranes for Novel Tunneling (A. Javey)

Layered Semiconductors

\square TMDC (eg. WSe ${ }_{\mathbf{2}}, \mathrm{MoS}_{2}$),
\square III-VI (eg. GaSe)

010

III-V on Insulator (XOI)

High Performance InAs XOI n-MOSFETs

Electron Mobility: $1000-7000 \mathrm{~cm}^{2} / \mathrm{Vs}$ SS ~ $75 \mathrm{mV} /$ decade $R_{c}{ }^{\sim} 80 \Omega \mu \mathrm{~m}$

Kuni Takei, et al, Nano Letters, 2011.
Kuni Takei, et al, APL, 2011
H Ko, et al, Nature, 2010

InAs/WSe 2 Heterostructure

$>$ Clear rectifying behavior is observed

Materials Approach:

Van der Waals 2D membranes:
\square Removes lattice mismatch constraints
\square Mix and Match: A wide range of heterojunctions is available
\square Atomically abrupt interfaces

Roadmap:

InAs

Fixed Layer MoS_{2} Layered
Thickness WSe_{2} Chalcogenides

What keeps me up at night:

Band edges are simply not sharper than $\sim \mathrm{kT} / 3 \mathrm{q}$, allowing us to pick up only a factor ~3 improvement.

What doesn't worry me:

Manufacturability and Yield.
If we can demonstrate individual high-performing devices, then a large international effort will become directed toward these problems.

A low-voltage technology, or an impedance matching device, needs to be invented/discovered at the Nano-scale:

transistor amplifier with steeper sub-threshold slope \bullet TFET's

- Negative Capacitance Gates
$--\mathrm{VO}_{2}$ metal-insulator transition

MEM's switch

Cu
Electro-Chemical Switch

