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In 2010, data centers accounted for
~1.3% of all electricity use worldwide,
~2% of all electricity use in the U.S.

F

Google’s new data center in Hamina, Finland, has an energy-efficient cooling system that uses seawater from a nearby bay



Vision for 2020: Swarms of Electronics:
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Power Usage Rising Faster Than Past
Trend

+ Because power consumption oCV,,?

and V44 (operation voltage) scaling has
slowed after 0.13um node.
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High Performance ITRS Roadmap




What Is the energy cost of
reading out your flash
memory?




Read the current going through a resistor, in the presence of noise:

(AI)* =2qix Af......... Shot Noise

(Ai)* = %XAf ........ JohnsonNoise

Required voltage V = IR >> 2kT /g ~ 50mVolts

Signal — to — Noise Ratio = '_ = '
A/ 20 IAf 2q Af
| > 20 x Af
2KT

4

Required poweriV > 2g Af x = 4KT x Af

With a safety margin:
Energy Consumed~ 40 KT per bit processed



Units:

~40kT/bit of Information

0.16 atto-Joules/bit of information
0.16 nano-Watts/Gbit/second

This is about 10° times less energy
than we are using today!



What will be the energy cost, per bit processed?

1. Logic energy cost ~40KT per bit processed
2. Storage energy cost ~40KT per bit processed

3. Communications currently >100,000KT per bit processed



There are many type of memory possible:
Flash

SRAM

Dram

Magnetic Spin
Nano-Electro-Chemical Cells
Nano-Electro-Mechanical NEMS
Memristor

Chalcogenide glass (phase change)
Carbon Nanotubes
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Similarly there are many ways to do logic.
But there are not many ways to communicate:

1. Microwaves (electrical)
2. Optical
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IBM’s Power PC750 Microprocessor
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What is the energy cost for electrical communication?

V2. =4kT RAf
2
Vnoise
R

=4KkT Af

Signal > Noise Power

Energy — per bit = 4KT per bit

All information processing costs ~ 40KkT per bit.
(for good Signal-to-Noise Ratio)
Great!

So what’s the problem?



The natural voltage range for wired The natural voltage range for a

communication is rather low: thermally activated switch like
transistors is >>kT/q, eg. ~ 40kT/q
V2., = 4KT R Af or about ~1Volt
2 1
Vnoise — 4kT R R—C
2 1
VnOise — 4kTXE
v2 _4KT g Voltage Matching Crisis
noise =~ ¢ at the nano-scale!
Vioise = | 4KT/q x q/C _ _ _
100mYolts  10pVolts If you ignore it the penalty will be
V ~ 1 mVolt (1Volt/ImVolt)? = 10°

The thermally activated
device wants at least one
electron at ~1Volt.

The wire wants
1000 electrons at 1m\olt each.

(to fulfill the signal-to-noise
requirement >1eV of energy)



The New Switch has to Satisfy Three Specifications:

1. Steepness (or sensitivity)
switches with only a few milli-volts
60mV/decade = 1mV/decade

2. On/Off ratio. 109: 1

3. Current Density or Conductance Density
(for miniaturization)
old spec at 1\olt: 1 mAmp/micron
our spec. 1 milli-mho/micron



A low-voltage technology, or an impedance matching device,
needs to be invented/discovered at the Nano-scale:

I
T B
_ - _ hv T
transistor amplifier with " ~leV
steeper sub-threshold slope 1
*TFET's photo-diode
*Negative Capacitance Gates
--VO, metal-insulator transition
®
o

giant magneto-resistance
spintronics

Cryd-EIectronics
kT/q~q/C

g

nano-transformer

A
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MEM's switch

solid ' electrolyte

Electro-Chemical Switch




An amplifying transistor as a voltage matching device:

Small voltage In
Large voltage out

out
——O

ino—— Ampl!f!cat!on of weak s!gnals has an energy cost!
Amplification of weak signals has a speed penalty!

steeper
sub-threshold
slope

Current

Gate Woltage J



The Zener Diode:

Bias Voltage
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The Esaki Diode:
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The Backward Diode as a Switch:

The Backward Diode:
These have been routinely

made in Ge homo-junctions,
since the 1960's.
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The Backward Diode as a Switch:

The sub-threshold slope
for tunneling depends
on the steepness of
the band-edges:




2 Ways to Obtain Steepness:

* Modulate the Tunneling Barrier:

* Density of States Switch

The sub-threshold slope  E:

for tunneling depends
on the steepness of
the band-edges:
----------- D J Er | INAS
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Type 111 band alignment

Idealized structure
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Switching _
Principle: COﬂdUCtIOn
band
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Switching _
Principle: COﬂdUCtIOn

band

Valence
band




What could go wrong?

1. guantum-mechanical level repulsion:
N

Energy Level

>

Gate Voltage
levels never line up!



Evolution of the Tunnel Switch 2010-2012:
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2d-2d pn Hetero-junction

Heterojunction

Channel
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BilLayer Switch




N-Channel Gate

P+ Source

Undoped Channe

N+ Drain

P-Channel Gate




P+ Source

N-Channel Gate N+ Drain
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‘ P-Channel Gate
X

The Bi-Layer pn-junction or
the Bi-Layer Tunneling Field Effect Transistor



Drop-In Technology:
drop in to existing FINFET

production line.

"

W Instead of n-channel
and p-channel, make

n and p on opposite
sides of the same fin.

P+ Source

Performance depends
precision of Work Function
control, and thickness
precision of the dual
channel layer.



N-Channel Gate C ?
G
N == C(Juantum
Undoped Channel Ciunnal __I_ N+ Drain
y = -
P-Channel Gate GI =
Lx

- Due to Capacitive

Voltage divider,
the gate
efficiency is poor,
~15% for a
silicon fin



charge density on capacitor plate

Quantum ! N = &
Capacitance gate | capacitor A qd d
impels ksl ke sl o sl e ol ol ki »
small d
Effective 2dquantum [well, N m"
Mass: Inversion | layer = > qVv
® A 7Z'h

charge density of 2d density-of-states

. gm  ge
Respectable gate efficiency requwes:q < 42

rh* qd°

Respectable gate efficiency requires m*<0.1m0



Try InAs,
effective mass is lower,
density of states is lower,
and C;,ntum IS lower.
The lower n-channel carrier density makes
it easier to swing the energy level

Lower effective mass—easier tunneling

We need m_4<0.1



InAs Band Diagram at Turn-on
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No Doping!

For Lab experiments: use Electric Field Induced pn junction.
For production use: Work Function induce pn junction.



Ground the
Valence Band
Channel for
better gate
control on the
n-channel

InAs Asymmetric 15 nm Body
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1 nm oxides position (nm)

100 nm long channel length
Ground heavy hole band (heavy in the tunneling direction)



2D Nanomembranes for Novel Tunneling (A. Javey)

Layered Semiconductors 111V on Insulator (XOI)

d TMDC (eg. WSe,, MoS,),
O 11-VI (eg. GaSe)




High Performance InAs XOIl n-MOSFETs
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4 | —— --et V=500 mV
— - - VS50 mV

Tias=2 M
Ls~207 nm
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Ves (V)

Electron Mobility: 1000-7000 cm?/Vs
SS ~ 75 mV/decade

Kuni Takei, et al, Nano Letters, 2011.
R.~80 Qum Kuni Takei, et al, APL, 2011
H Ko, et al, Nature, 2010



InNAs/WSe, Heterostructure

Junction

area 9
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> First demonstration of a diode 0 T | I
based on a van der Waals -4 -2 0
heterojunctions. Vy(V)

» Clear rectifying behavior is
observed Steven Chuang, et al, submitted, 2012



Materials Approach:

Van der Waals 2D membranes:
JRemoves lattice mismatch constraints

JMix and Match: A wide range of heterojunctions
is available

JAtomically abrupt interfaces



Scientific :

Research

Roadmap:

Backward Diode

p_
many channel
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applications: -7

Sensors
Photodetectors
radio mixers
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MoS, Layered

Thickness A WSe, Chalcogenides



What keeps me up at night:

Band edges are simply not sharper than ~kT/3q,
allowing us to pick up only a factor ~3 improvement.

What doesn’t worry me:

Manufacturability and Yield.
If we can demonstrate individual high-performing devices, then a

large international effort will become directed toward these
problems.



A low-voltage technology, or an impedance matching device,
needs to be invented/discovered at the Nano-scale:

I
T B
_ - _ hv T
transistor amplifier with " ~leV
steeper sub-threshold slope 1
*TFET's photo-diode
*Negative Capacitance Gates
--VO, metal-insulator transition
®
o

giant magneto-resistance
spintronics

Cryd-EIectronics
kT/q~q/C

g

nano-transformer

A

— &

MEM's switch

solid ' electrolyte

Electro-Chemical Switch






