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Data Center Electricity Usage 

• In 2010, data centers accounted for 
~1.3% of all electricity use worldwide, 

~2% of all electricity use in the U.S.  

 

J. Koomey, Growth in Data center electricity use 2005 to 2010 (Analytics Press, Oakland, CA), 2011  
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• Because power consumption     Vdd
2  

   and Vdd (operation voltage) scaling has 

slowed after 0.13μm node. 
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What is the energy cost of 

reading out your flash 

memory? 
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Read the current going through a resistor, in the presence of noise: 

With a safety margin: 



Units: 

 

~40kT/bit of information 

 

0.16 atto-Joules/bit of information 

 

0.16 nano-Watts/Gbit/second 

 

This is about 106 times less energy   

    than we are using today! 

 

 



What will be the energy cost, per bit processed? 

 

 

1. Logic  energy cost ~40kT per bit processed 

 

2. Storage  energy cost ~40kT per bit processed 

 

3. Communications  currently >100,000kT per bit processed 
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There are many type of memory possible: 

1. Flash 

2. SRAM 

3. Dram 

4. Magnetic Spin 

5. Nano-Electro-Chemical Cells 

6. Nano-Electro-Mechanical NEMS 

7. Memristor 

8. Chalcogenide glass (phase change) 

9. Carbon Nanotubes 

 

 

Similarly there are many ways to do logic. 

 

But there are not many ways to communicate: 

 

1. Microwaves (electrical) 

2. Optical 



Moore 

You? 



! 

Transistor 



fkT
R

V

fRkTV

noise

noise





4

4

2

2

What is the energy cost for electrical communication? 

Signal  Noise Power 

Energy      per bit 
       =  4kT per bit 

All information processing costs ~ 40kT per bit.   

    (for good Signal-to-Noise Ratio) 

Great! 

 

So what’s the problem? 
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The natural voltage range for wired  

 communication is rather low: 

The thermally activated 

device wants at least one 

electron at ~1Volt. 

The wire wants 

1000 electrons at 1mVolt each. 
  

 (to fulfill the signal-to-noise 

 requirement >1eV of energy) 

Voltage Matching Crisis  

at the nano-scale! 

 

If you ignore it the penalty will be  

(1Volt/1mVolt)2 = 106 

The natural voltage range for a 

thermally activated switch like 

transistors is >>kT/q, eg. ~ 40kT/q  

      or about ~1Volt 



The New Switch has to Satisfy Three Specifications: 

 

1. Steepness (or sensitivity) 

  switches with only a few milli-volts 

  60mV/decade  1mV/decade 

 

2. On/Off ratio.   106 : 1 

    

 

3. Current Density or Conductance Density  

   (for miniaturization) 

 old spec at 1Volt: 1 mAmp/micron 

  our spec: 1 milli-mho/micron 



nano-transformer 
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A  low-voltage technology, or an impedance matching device, 
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transistor amplifier with  

steeper sub-threshold slope 

photo-diode 

+ 
+ + 

- 

+ 

VG 

MEM's switch 

Cryo-Electronics 

kT/q~q/C 

Cu 

Cu 

solid       electrolyte 

Electro-Chemical Switch 

giant magneto-resistance 

spintronics 

+ 

•TFET's 

•Negative Capacitance Gates 

--VO2 metal-insulator transition 



An amplifying transistor as a voltage matching device: 

Small voltage in 

Large voltage out 

in 

out 

Amplification of weak signals has an energy cost! 

Amplification of weak signals has a speed penalty! 
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The Zener Diode: 
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The Esaki Diode: 



The Backward Diode as a Switch: 
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The Backward Diode: 

These have been routinely  

made in Ge homo-junctions, 

since the 1960's. 



The sub-threshold slope  

for tunneling depends 

 on the steepness of  

the band-edges: 

The Backward Diode as a Switch: 



• Modulate the Tunneling Barrier: 
 

 

 

 

 

• Density of States Switch: 

2 Ways to Obtain Steepness: 

The sub-threshold slope  
for tunneling depends 

 on the steepness of  
the band-edges: 
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Type III band alignment 

Idealized structure 
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Principle: 
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Principle: 



What could go wrong? 

1. quantum-mechanical level repulsion: 
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Gate Voltage 

levels never line up! 
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Heterojunction Homojunction Backward Diode 

2d-2d pn Hetero-junction 

Evolution of the Tunnel Switch 2010-2012: 
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The Bi-Layer pn-junction or  

the Bi-Layer Tunneling Field Effect Transistor 
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Drop-In Technology: 

drop in to existing FinFET 

production line.   

Performance depends 

precision of Work Function 

control, and thickness 

precision of the dual 

channel layer. 

Instead of n-channel 

and p-channel, make 

n and p on opposite 

sides of the same fin. 
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Voltage divider, 

the gate 
efficiency is poor, 

 ~15% for a 
silicon fin 
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Respectable gate efficiency requires: 

Respectable gate efficiency requires   m*<0.1mo 



Try InAs,  
effective mass is lower,  

density of states is lower,  
and Cquantum is lower. 

 
The lower n-channel carrier density makes 

it easier to swing the energy level 
 

Lower effective mass—easier tunneling 
 

We need meff<0.1 
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No Doping! 
For Lab experiments: use Electric Field Induced pn junction. 

For production use: Work Function induce pn junction. 



InAs Asymmetric 15 nm Body 

1 nm oxides 
100 nm long channel length 
Ground heavy hole band (heavy in the tunneling direction) 
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2D Nanomembranes for Novel Tunneling (A. Javey) 

 TMDC (eg. WSe2, MoS2),  

 III-VI (eg. GaSe) 
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Electron Mobility: 1000-7000 cm2/Vs 
SS ~ 75 mV/decade 
Rc~80 Ωµm  
 

High Performance InAs XOI n-MOSFETs 

Kuni Takei, et al, Nano Letters, 2011. 
Kuni Takei, et al, APL, 2011 
H Ko, et al, Nature, 2010 



InAs/WSe2 Heterostructure 

SiO2

Si

S DInAsWSe2

 First demonstration of a diode 
based on a van der Waals 
heterojunctions.   

 Clear rectifying behavior is 
observed 
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Materials Approach: 

Van der Waals 2D membranes: 

Removes lattice mismatch constraints 

Mix and Match: A wide range of heterojunctions 
is available 

Atomically abrupt interfaces 
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What keeps me up at night: 
 
Band edges are simply not sharper than ~kT/3q,  
 allowing us to pick up only a factor ~3 improvement. 
 
What doesn’t worry me: 
 
Manufacturability and Yield.   
If we can demonstrate individual high-performing devices, then a 
large international effort will become directed toward these 
problems. 



nano-transformer 
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A  low-voltage technology, or an impedance matching device, 

needs to be invented/discovered at the Nano-scale: 
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