Alive or dead?

Self-organization of biological structures

Dan Fletcher UC Berkeley / LBNL

Development

H. Williams and J. Smith

Xenopus laevis

Morphogenesis

G. Venugapalan and D. Fletcher

Mouse mammary epithelial cells (EpH4)

Formation of global order out of a series of local interactions, involving energy consumption.

Properties of living systems:

- Out of equilibrium
- Robust, adaptive
- Self-healing, self-scaling
- Sense & respond to external signals
- Programmed by molecules

Can these properties be harnessed by materials? Can self-organized biological structures be built?

Building biological structures

Paul Weiss, 1962

Chick embryo

A childhood warning...

Humpty Dumpty sat on a wall, Humpty Dumpty had a great fall. All the king's horses and all the king's men Couldn't put Humpty together again.

c. 1787

W. W. Denslow, 1904

...but some still try

Mary Shelley, 1918

Frankenstein

Why attempt to rebuild biology?

The goal: Understand the physical and chemical mechanisms that govern assembly and function of biological structures

The approach: Bottom-up construction of cellular structures, starting with molecules (proteins, DNA, lipids, etc) – known as 'cellular reconstitution'

The use: Create materials with unique properties, such as the ability to sense and respond and the ability to self-repair

A brief history of reconstitution

The spindle

A microtubule-based structure (green) that organizes and separates chromosomes (blue) during cell division

Self-organization over 4 orders of magnitude

The spindle

R. Laughlin and R. Heald

EB1-GFP

Cell size decreases during embryogenesis

Matt Good, Mike Vahey, Rebecca Heald

Time (hours)

Spindle size decreases during embryogenesis

Matt Good, Mike Vahey, Rebecca Heald

Spindle size scaling

E. G. Conklin, 1912

Centrifuged crepidula (sea snail) 2-cell embryo

Cell & spindle regulation during development

EXPERIMENAL TEST: Confine *Xenopus* egg extract spindles in cell-like compartments of defined size

Encapsulation in cell-like compartments

- Droplet Size
- Pole-to-pole L
- Spindle Width

RHO Tubulin DAPI DNA

Spindles in cell-like compartments

Matt Good, Mike Vahey, Rebecca Heald

Spindle size scales with compartment size

Extract unchanged!

Spindles simply assembled in compartments of varying size

Good, et al., Science, in press

X. Laevis CSF spindles

How might volume affect assembly?

Reduced cell volume reduces # of spindle building blocks

Limiting components

- Organelles form from a pool of components in the cytoplasm
- Growth rates often depend on concentration of components
- As cell volume changes, the number of components may become limiting, even if concentration does not change

Goehring & Hyman, Current Bio, 2012

Lesson 1: Volume can control scaling

- Conservation of tubulin forms the basis of a simple model of spindle scaling.
- The model predicts two regimes (linear & plateau) that are observed experimentally.
- The model is numerically consistent with experimental data over a broad range of cell/droplet sizes.
- Tubulin is necessary but not sufficient; other components are likely also limiting.
- The model can be generalized to account for non-linear dependencies on tubulin (or other protein) concentrations, diffusion, etc.

Lesson 2: Architecture controls elasticity

Networks reversibly stiffen and

Chaudhuri et al., Nature, 2007

Lesson 3: Bending alters binding

Arp2/3 favors the outside of a bent filament

Risca et al., PNAS, 2012

Lesson 4: Membranes bundle & stabilize

Liu et al., Nature Physics, 2007

Lesson 5: Crowding induces curvature

Stachowiak, Schmid, et al., Nature Cell Biology, 2013

Toward self-organized biological materials

Ingredients (molecules) + instructions (constraints) are necessary to reconstitute biological structures.

- Lesson 1: Volume can control scaling
- Lesson 2: Architecture controls elasticity
- Lesson 3: Bending alters binding
- Lesson 4: Membranes bundle & stabilize
- Lesson 5: Crowding induces curvature
- Etc, etc, etc.

How can we form more complex biological structures? How do we confirm biological function?

Alive or dead?

Do we need a Turing test for biological materials?

FLETCHER LAB | UC BERKELEY

Phill Geissler (UC Berkeley) Rebecca Heald (UC Berkeley) Dyche Mullins (UCSF) Carl Hayden (Sandia) Darryl Sasaki (Sandia)